If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+0.8x-0.8=0
a = 20; b = 0.8; c = -0.8;
Δ = b2-4ac
Δ = 0.82-4·20·(-0.8)
Δ = 64.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.8)-\sqrt{64.64}}{2*20}=\frac{-0.8-\sqrt{64.64}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.8)+\sqrt{64.64}}{2*20}=\frac{-0.8+\sqrt{64.64}}{40} $
| 3(1+1/2y)+5y-11=0 | | 0=5-(2x-7) | | x^2/0.10=4.0*10^-9 | | (x+0.1)(x)=(2.0*10^-8) | | 8x+6x+2x=0 | | 5(x-)-8=3x+7 | | 1/2r/2/8=1/4 | | 625/t/5=125 | | 0.3x/0.1=4 | | 3e+14=28 | | 2q+4-q=3q | | 1/11x=-3 | | -9/10x=18 | | 9.5x1.14=10.83 | | 2y-10+y+20=180 | | -1/4y-(y+4/5)=1/40(y+5) | | 2y-10+3y+20=180 | | 23=3+7x2+3 | | 11-3x4+2=34 | | 12=3x6-2 | | 4(x-3)=2-(2x-6) | | 4z(5z+3)=114 | | x+x+1+x+2+x+3=-142 | | 2x+1+2x+3+2x+5=141 | | 2x+2x+2+2x+4=-84 | | 5x+10-x=2x+30 | | X+(-0.3x)=100 | | -4=9+y | | -6(x+3)=-18+5x | | -8(x-6)=8(7-2x) | | -3-4(8x+7)=37+2x | | -5(x+7)+8=7x-39 |